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Abstract—Ethyl 3-halo-2-propynoates undergo facile (no heating, no base, no solvent) palladium- and copper-free cross-coupling
with 4,5,6,7-tetrahydroindoles on alumina to afford the corresponding 4,5,6,7-tetrahydroindole-2-propynoates in 46% and 71%
yields. The yield of the by-products [ethyl 3,3-di(4,5,6,7-tetrahydro-1H-indol-2-yl)acrylates] under appropriate conditions can reach
79%.
� 2007 Elsevier Ltd. All rights reserved.
Efficient methodologies for the regioselective function-
alization of pyrroles and indoles are of great impor-
tance, since these ring systems occur as structural
motifs in numerous biologically active natural products
and pharmaceuticals.1 Among these heterocycles, ethyn-
yl derivatives attract major attention due to the rich
chemistry of the triple bond.2 As a result, considerable
efforts have been devoted to the development of new
methodologies for efficient synthesis of ethynylpyrroles
and ethynylindoles.3

However, almost all the known methods for the C-ethyn-
ylation of pyrroles and indoles require either function-
alized pyrroles or indoles as reactants.3b,e–g

Recently, a facile direct regio- and chemoselective ethyn-
ylation of pyrroles and indoles with acylbromoacetyl-
enes on Al2O3 has been developed.4 This new
approach requires no palladium, copper, base, solvent
or a prior functionalization step, making the target
chemical transformation highly efficient experimentally.

Consequently, we were intrigued by the prospect of
applying this methodology to the synthesis of 4,5,6,7-
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tetrahydroindole-2-propynoates. These compounds are
promising protected ethynylpyrroles, since the ester
moiety can be easily removed through conventional
decarboxylation procedures.5 Furthermore, 4,5,6,7-tetra-
hydroindole-2-propynoates undergo easy catalytic
dehydrogenation6 to yield 2-substituted indoles, which
are potential intermediates for many alkaloids and phar-
macologically important substances.7

Although methods for the preparation of 3-substituted
indoles are well established, there is a need for easier
access to 2-substituted indoles: compared with the corre-
sponding 3-substituted compounds, 2-ethynylindoles
still remain difficult to access since most electrophilic
aromatic substitution reactions of indoles occur at the
3-position.

In this Letter, we report the results of our studies on
cross-coupling of 1H- and 1-vinyl-4,5,6,7-tetrahydroin-
doles with ethyl bromo- and iodopropynoates to give
2-(ethynyl)-4,5,6,7-tetrahydroindoles.

The reaction proceeds at room temperature, rapidly
(0.5 h) and is slightly exothermic. Experimentally, the
reactants are ground with an excess of Al2O3 under sol-
vent-free conditions. The synthesis was monitored by
NMR (1H) of CDCl3 extracts of the reaction mixture.

In contrast to benzoylbromoacetylene, which with
4,5,6,7-tetrahydroindole 1 [Al2O3, pH 7.4, 10-fold
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amount (by weight), room temperature, 0.5 h] formed
mainly 2-(benzoylethynyl)-4,5,6,7-tetrahydroindole,4a

ethyl bromopropynoate 2a under similar conditions,
reacted with 1 to form a mixture of 3-(4,5,6,7-tetrahydro-
indol-2-yl)-2-propynoate 3 (20%), 3-bromo-3-(4,5,6,7-
tetrahydroindol-2-yl)-2-propenoate 4 (62%) and 3,3-
di(4,5,6,7-tetrahydroindol-2-yl)acrylate 5 (14%) (Scheme
1).

With an increased alumina ratio (50-fold), product 4
was not formed and the only reaction products were
indoles 3 (38%) and 5 (62%). A similar result was
observed when a more basic sample of alumina (pH
9.5, 50-fold amount) was employed.

When K2CO3 (10% relative to alumina) was added to
the reaction mixture with 50-fold amount of alumina
(pH 9.5) the proportion of indolylpropynoate 3 in the
reaction mixture increased to 58% (preparative yield
46%, Table 1),8 while the content of di(indolyl)acrylate
5 dropped to 34%.

Unlike ethyl bromopropynoate 2a, ethyl iodopropyno-
ate 2b reacted with 4,5,6,7-tetrahydroindole 1 (ratios
of 1:2b, 1:1, 2:1) on alumina of different pH values
(7.4 and 9.5) and with different quantities (10- and 50-
fold excess) to afford chemospecifically, di(indolyl)acryl-
ate 5 (yield 79%, Table 1) (Scheme 2).9
Table 1. Cross-coupling of 4,5,6,7-tetrahydroindoles 1 and 10 with
ethyl-3-halo-2-propynoates 2a,b on alumina

Reagents Al2O3 Product Yield (%)

Indole Propynoate pH Amount

1 2a 9.5 50-folda 3 46
5 24

1 2b 9.5 50-fold 3 0
5 79

10 2a 7.4 50-fold 11 71
12 0

10 2b 9.5 5-fold 11 24
12 31

a K2CO3 (10% relative to alumina) was used.
Upon mixing of equimolar quantities of indole 1 and
ethyl bromopropynoate 2a without alumina, strong
self-heating occurred and bright violet colouration was
observed. A caramel coloured reaction product con-
sisted of di(indolyl)propanoate 7 and propynoate 2a
(Scheme 3).

With 2 mol equivalents of indole 1 per 1 mol equivalent
of ethyl bromopropynoate 2a, the reaction furnished
propanoate 7, though accompanied by resinification.
An attempt to isolate this product by chromatography
(Al2O3 or SiO2, diethyl ether–n-hexane, 1:1) failed and
so it was characterized only by spectral methods.10

Signal broadening in the 1H NMR spectra of adduct 7,
atypical chemical shifts of the C–Br (133.4 ppm), C-5
(157.7 ppm) and C-2 (129.9 ppm) carbon atoms in the
13C NMR spectra suggest that this adduct is capable
of dissociation to cation 8 or radical 9, which are stabi-
lized by the two adjacent indole systems and, probably,
by the ester group (Scheme 4).

Recently,11 it was shown that 1-vinyl-4,5,6,7-tetrahydro-
indole 10 reacts with benzoylbromoacetylene (Al2O3,
pH 7.4, 10-fold amount) selectively to give the corre-
sponding ethynylindole in 70% yield. Under similar
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conditions, indole 10 and ethyl bromopropynoate 2a
formed (0.5 h) di(indolyl)acrylate 12 (23%) along with
indolylpropynoate 11 (77%) (1H NMR).

At a higher content of Al2O3 (50-fold amount) the
selectivity of the reaction was greater and in 0.5 h the
ratio of 11:12 reached 92:8 (preparative yield of indol-
ylpropynoate 11 in this case was 71%, Table 1) (Scheme
5).12

In the case of ethyl iodopropynoate 2b, indole 10 reacted
slowly and in contrast to indole 1, with no selectivity: in
0.5 h (Al2O3, 10-fold amount) the starting material 10
still remained (46%) with the ratio of 11:12 at 40:14.

To isolate di(indolyl)acrylate 12 we carried out the reac-
tion with 10 and iodopropynoate 2b (ratio of 10:2b, 1:1)
on alumina (pH 9.5, 5-fold amount) for 1 h. In this
case, the reaction gave indolylpropynoate 11 (53%)
and di(indolyl)acrylate 12 (47%), the preparative yield
of the latter was 31% (Table 1).13

Thus the results obtained represent a new concise and
experimentally simple route to the 4,5,6,7-tetrahydro-
indole-2-propynoate and its vinyl derivative.
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